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The Random Choice Method, conceived by Glimm, and developed by Chorin, for solving 
hyperbolic partial differential equations, is applied to calculate the disturbance produced by a 
spherical underwater explosion. Results are compared with earlier calculations, under similar 
conditions, using the Method of Characteristics. Good qualitative agreement with earlier 
results is observed. 

I. INTRODUCTION 

The aim of this paper is to apply a recently developed technique to the ca~c~~at~~~ 
of the flow field generated by an explosion released at a small depth beneath t 
ocean surface. This problem has been investigated previously (see [ 1, 21) using the 
classical Method of Characteristics and Shock Fitting. 

The present numerical method used is a Random Choice Method proposed by 
Glimm [3] and developed by Chorin [4, 53. This method is used for obt~~~~g the 
numerical solutions of systems of nonlinear hyperbolic systems, ~a~ic~i~ly those 
arising in gas dynamics. Chorin has also deveioped the present metbo~ for 
hydrodynamics. 

The main advantage of this method is its ability to track disco~ti~uities, thus 
keeping shocks, slip lines, sharply defined, as opposed to other numerical mgtbod~ 
which tend to smear out shocks and other discontinuities. This method also does not 
require the introduction of artificial viscosity. The present objective is to apply 
Chorin’s Random Choice Method to the problem of underwater explosions, and 
observe how well it defines the shock and slip line boundaries. The shock is follower 
until it makes contact with the ocean surface, up to which time the flow field 
the shock is spherically symmetric. 

The one-dimensional equations of motion for an inviscid, no~-~eat-co~d~~t~~g~ 
radially symmetric flow can be written in the form 

U, + F(U), = -W(U), (1) 
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where 
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In Eqs. (1) and (2) the independent variables are t, the time, and r, the radial distance 
from the center of the explosion. The unknowns are p, the density, U, radial velocity, 
p, pressure, E, specific total energy. The momentum flux pu is denoted by m. Finally 
a = 2 in cylindrical flow and a = 3 in spherical flow. Subscripts indicate differen- 
tiation. For perfect gases we may write 

E =P/(y - 1) -t $ppu’, (3) 

where y is the ratio of specific heats (a constant greater than 1). There are two 
problems in solving system (1) directly. First, there is a singularity at Y = 0. Second, 
the momentum equation cannot be written in conservation form. Sod [6] and Li and 
Holt [7] both used a judicious combination of operator splitting and Glimm’s method 
to solve the system. 

2. OUTLINE OF THE METHOD 

To solve the system of equations (2) using Glimm’s method, we need to reduce 
them to conservative form without the inhomogeneous term. To handle this we 
proceed in the format of Sod [6], by first removing the nonhomogeneous term 
--W(U) from Eq. (1) and solving 

U, + F(U), = 0 (4) 

Glimm [3] has solved systems of the form (4) by his random choice method, which 
was later modified by Chorin [4] for hydrodynamics. 

The results of the system (4) are then used to solve the inhomogeneous term in the 
system of ordinary differential equations 

u, = -W(U). (5) 

3. EQUATIONS OF STATE FOR WATER 

By definition the specific internal energy e can be written in the form 

4%~) =e,@) +eAW 
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for a waterlike substance, where p is the density, and S is the specific entropy, 
pressure p and temperature T are given by 

P = +/a( l/P), T = ik,@S. 

Under all conditions, therefore, p =p@). For the present analysis the Tait eq~at~~~~ 
written in the form 

P =B[@/U - 113 

will be used to relate the pressure and density in the water regions. Here y = 7, 
B = 3268 atms, ,i?= 9.233 x lop4 atm-sec/ft using data obtained for sea water by 
Richardson et al. [S]. The speed of sound in the liquid is given by 

Q = @P/~P)“~ = MP + BYPI I” = (~P/P)“~, 

where, henceforth, 

P=p+B. 

We note that the Tait equation yields the relation 

j/p” = Con&. 

4. RIEMANN PROBLEM 

To solve (4) as a given initial value problem, a solution of the system is found 
satisfying the initial conditions U(r, 0) = given function of r, 

We approximate U(r, t) at points (i Ar, n At) by cl= U(i Ar, n At). By repre~~~t~~~ 
the initial distribution of U(r, 0) by step functions, i.e., 

U(r, 0) = U(i Ar, 0) (i-f)Ar<r<((i+f)Ar, i = 0, 1, 2,..., 

we create a sequence of Riemann problems. We then solve each Riema~n ~~obl~~~ 
(system (4)) along with the constant initial data 

U(r, n At) = a;, 1 r>(i+{)Ar 

= g! 
Pi 

I r<(i+t)Ar 

for each adjoining ceil. (For the sake of brevity, the reader is referred to Sod 163, Li 
and Hoit [7] for a complete detailed account of Climm’s method and the h~d~~~~ of 
boundary conditions.) 
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System (4) is solved as a l-dimensional shock tube problem. We thus have 
different given states on each side of the diaphragm for t < 0: 

W, 0) = S, = Gl, ul, PJ i-c0 

=s,= @,Y %,P,) r > 0. 
(10) 

At t = 0, the diaphragm is ruptured, and a shock wave propagates to the left and a 
centered expansion wave to the right (or vice versa, depending on the initial data). 
Figure 1 shows, for t > 0, the different wave possibilities. Therefore, either a shock or 
expansion wave propagates out, this being denoted by S,, S,. S* is the steady state 
region unaffected as yet by the waves, whereas S,, S, denote the areas affected by the 
propagating waves. The lines Z,, l2 serve to separate these two regions. 

Across a shock wave in a perect gas we have the two discontinuity conditions: 

PlUlVl -PoUo”o =po --Ply 

PlVl =PoUo = -MT 

(11) 

(12) 

with v = u - t, where < represents the speed of the shock, subscripts 0 and 1 denote 
conditions on the left and right sides of the shock, respectively. 

For water, we modify (11) to 

(114 

Combining Eqs. (11) and (12) for the right wave, we obtain 

Mr = -PA% - 6) = -P*@* - 0 

or (13) 

Eliminating 4, from Eqs. (1 I), (12), we have 

(u, - u*>’ = (VP* - l/P,>(P* -P,> 

FIG. 1. The boundaries in a Riemann problem. 
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or 

-u = P*-Pr II2 
u* i- 

( ) PrP* 
CP* - Pr)“2. 

Substituting Eq. (14) into Eq. (13) yields 

For gas, we use the Rankine-Hugoniot equations to obtain 

Y-1 112 
M,=@,Py2 TXSy- 

( 
Y+l 

1 
> w-here x> 1, x =pJmjpr. (366 

For water, we use Eq. (8a), with y = 7, to obtain 

MY= (~rPY"KP*/&- 1)/(1 -P,/P,Ni'2 

= (P,P,>"'KP*/&- 1)/(1 - m/~*>1'y11'2 

or 

M,= (p,r?,y[(x- 1)/(1 - (l/X)“3]“‘, where x> 1, x =jis jjTr (16a) 

If the left wave is a shock, we obtain 

Ml = (PI -P*>& - %d 

and by similar analysis to the above, we obtain the following relations: 

For air 

For water 

M, = @,p,y2[ (x - l)/( 1 - (l/x)“?] i’* x=$i*/IT,> 1. VW 

If the right wave is an expansion wave, the Riemann invariants, valid for both gas 
and water, may be used. Namely, 

2 2 
u,--aa,=u,----a 

Y----l y-l * 

or 

2 (a, - a*>. %--*=y-l 



382 FLORES AND HOLT 

Substituting Eq. (19) into Eq. (13) yields, for gases, 

Mr = (PrPrY2 ( 
Y-1 (1-x) - 7$/z (1 4-wr) 1 

For water we use Eqs. (8), (8a) to obtain 

Mr = (P,Pr>“’ ( 
Y-1 1-X 

-pT 1 -x(Y-w2Y 1 

X=P*lPr < 1. (20) 

(204 

The corresponding relations for an expansion wave on the left are 

For gases 

J,f, = (P,PrY2 ( Y-1 l-x 
- 
2Y l/2 1 -x(Y-1)/2Y 

) 
x=P*lP, ( 1. 

For water 

M, = (&PlY2 

Summarizing, the expansion wave relations in gases are 

M, = (PrPY2 4(P*lP*h 
Jfr = (PrPrY2 #(P*lPA 

where 

,(x)[++q”2 x>l 
= y-l 

[ 
1-X 

3 l/2 1 -x(Y--1v2Y 
1 

x< 1. 

The corresponding relations in water are 

Ml = (&PrY2 hC* lP,h 
Mr = (~rP,Y2 h(P*/m 

where 

41(x) = [(x - 1)/U - www’” x>l 

(21) 

(214 

(22) 

(23) 

= 
L 
$+1-x)/(1 -X(y-1)12,] x< 1. 
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When (x - I) is small, it is advisable to represent #(x) and #r(x) by bi~~rn~al 
expansions. 

Bn elimination of U* from Eqs. (13) and (17), we obtain 

P* = (ul- a, +p,lM, + P,,‘M,Y~~I~, + V@,h 

The Eqs. (24) and (22) (gas alone), Eqs. (24) and (23) (water alone) or Eqs. (22) 
and (23) (gas and water) provide three relations for three i~k~owns p*, 
After choosing a starting value pi (or My or MF) we solve these relations 
iteration. Here we choose pi = j(p, +p,) (for details on the iteration procedure, and 
choice of starting value, see Chorin [4]). After pe, M,, M, ve been determines, we 
may obtain U* by eliminating p* from Eqs. (13) and (17). 

The method of choosing the random numbers most efficiently is fully described in 
Chorin 141. 

5. SOLUTION OF THE ORDINARY DIFFERENTIAL EQUATIONS 

The operator splitting technique used by Sod f6] is a predictor-corruptor method 
applied to Glimm’s method after every full time step. We foollow here the rnod~~~atio~ 
sf the method of Li and Holt [7] which essentially updates the solution at every half 
time step. As noted by Li and Holt, this requires no additional work, and the 
resolution is greatly enhanced. For full details of the scheme, see 171. 

6. APPLICATION: RELEASE OF A SPHERE OF GAS AT 

A spherical diaphragm of radius r, located at a depth h below the surface of the 
ocean, is filled with gas at high pressure peg. At time t = 0, the dia~bragm bursts, 
sending out a spherical shock, followed by a contact surface. This contact surface 
separates the gaseous and water regions. Behind the contact discont~n~~t~ an 
expansion wave moves towards the axis r = 0. A weak secondary shock is ~~rrn~~ 
shortly after time t = 0 and at first travels outwards briefly. This shock then starts to 
strengthen as it turns to propagate inwards, and eventually collapses on the axis. This 
problem has been considered by Friedman [2] and Chan et al. [S]. In a~~~~~~~ 
Glimm’s method to this problem, we check the accuracy with which the key surfaces 
of discontinuities are followed. The initial conditions considered are given in Table 1. 

In the analysis that follows we non-dimensionalize the system (I) in terms of the 
following constants. All lengths are divided by h, the depth at the center of the s 
r = ?/lh ((3 denotes dimensional qualities). Velocities are 
sound in the undisturbed ocean, so we write u = z.Z/a,,. The density is divid 
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TABLE I 

Values of Basic Parameters 

Initial radius of gas sphere 
Depth of gas sphere center 
Initial pressure of explosion gas 
Initial explosion gas temperature 
Specific heat ratio in explosion gas 

l/3 ft 
1 ft 
9000 atm 
2500°K 
1.4 

the density in the undisturbed water p = p/&,, . The pressures are divided by p,, + B 
(= 3269 atms), pow = 1 atms in undisturbed water, p =j/(p,,, + B) and time is 
divided by (/z/q,,), t =?/(h/a,,). The space step is chosen as dr = 0.01, while the 
time step is chosen to satisfy max(]u] + a) At/AT < 1, where a is local sound speed. 

In Fig, 2, the pressure distribution is displayed at time intervals of 0.05 apart. Note 
the sharpness of the shock, the number of zones for this variation is zero. With 
increasing time, the shock is expanding towards the ocean surface. The shock is 
weakening as it propagates outwards, as indicated by the pressure rise behind it. 
Also, the pressure at a point behind the shock is decaying with time as would be 
expected (see Cole [lo]). 

In Fig. 3, the density distribution has the basic properties of the shock as does the 
pressure distribution. The density jump is not as great across the shock, as expected, 
since we are dealing with sea water. In the density profiles, a contact surface appears 
propagating outwards. It is due to Glimm’s method that this contact surface remains 
perfectly sharp. 

In Fig. 4, the velocity distribution is displayed. The particle velocity is greater near 
the expansion wave than right after the shock. Again, the clarity of the shock is main- 
tained. 

3.or 

TIME 

- =0.05 
----eo.,o 
.-.-.- so,,eJ 
--=0.20 

7 I I i 
, i I 

OO 
I I I I I I I I i I \J 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 I .o 
R 

FIG. 2. The pressure distribution behind a spherical blast wave. 
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TIM 

-=0.05 
----=o.,o 
._.-.- =0,\5 
--=0.20 

FIG. 3. The density distribution behind a blast wave. 

In Fig. 5, the contact surface and shock paths are plotted. This agrees qu~itati~ely 
with a similar plot by Ballhaus and Holt [ 11. There were quantitative differences in 
the speed of the underwater shock and contact surface. This was due to the fact that 
in the present study air was used in the interior of the pressurized sphere, wbe~~a!~ 
helium was used in [I]. 

TIME 

-=0.05 
----ao.10 
.-._._ =0,,5 
--=o.zo 

L 

B 

-- 
7 

I \J 
0.9 1.0 

R 

FIG. 4. The velocity distribution behind a blast wave. 
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0.4 
- GAS BUBBLE-WATER INTERFACE 
---- UNDERWATER SHOCK 
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PO, = I atm 

Pas = 9000 atm 

I I I I 
0.6 0.7 0.0 0.9 1.0 

r 

FIG. 5. Paths of underwater blast wave and gas-water interface. 

7. CONCLUSIONS 

In general, the qualitative results agree with what we expected to-observe in this 
phenomenon. Glimm’s method does in fact track the shock and slip line with perfect 
clarity, with no smearing as compared to other methods. Also, the simplicity of the 
method makes it a very inexpensive program to run and allows us means to explore 
and observe other qualitative results (and rough quantitative results) at a very low 
cost. 

At a given time, however, thought should be given to the fact that the shock and/or 
contact surface may not be exact due to the randomness of the Glimm’s method. Yet, 
on the average, their positions are exact. The roughness in the expansion wave is due 
to the randomness of the method, 

The operator splitting appears to add error to the numerical solutions. A numerical 
study on this effect has been done (see [ 111) and there exists a new random sampling 
method to help keep these errors down. The authors have a copy available of the new 
method. 
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